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Abstract
Using a piston–cylinder displacement technique, the pressure–volume (P –V )
relation of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG) has been
measured up to a pressure of 4.5 GPa at room temperature. In the lower part
of the high-pressure region the change of volume with pressure has remarkable
non-linear characteristics indicating the existence of a large amount of free
volume. A simple equation of state (EOS) with a cubic polynomial can be used
to fit the experimental P –V data very well. From this, a potential function
describing the EOS of the BMG has also been determined through combining
experimental and theoretical analysis.

The behaviours of solids such as metallic or non-metallic crystals [1–4], oxide glasses [5, 6],
polymer glasses, and ceramics under high pressure have been analysed by many authors on
the basis of a model potential and the relationship between cold and thermal pressures [1–9].
However, studies on the equation of state (EOS) of metallic glass have been scant because of the
inability to prepare bulk specimens. When a metal melt (liquid) is cooled, one of two events may
occur. Either crystallization may take place at the melting point Tm, or else the melt will become
‘supercooled’ for temperatures below Tm, becoming more viscous with decreasing temperature,
and may ultimately form an amorphous solid, i.e., a metallic glass. Thus, this solid or metallic
glass state can be considered as the result of structural freezing of a melt or liquid. In the past,
metallic glass was prepared in the form of thin strips due to its lack of glass formation ability,
and thus many studies were restricted. The fundamental understanding of the microstructure
and other properties of metallic glass is not as developed as that for crystalline solids [10–12].
The discovery of complex multicomponent bulk metallic glass (BMG) has stimulated great
interest in various phenomena which were difficult to explain before. The large size and high
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thermal stability of BMGs allow a detailed and accurate study of their various properties over a
large temperature and pressure range [11,13–15]. Typical examples include the investigation of
pressure-assisted nanocrystallization and enthalpy change in Zr-based BMG [11,15]. However,
the understanding of pressure effects in these processes still remains on a very qualitative level
because of the lack of a quantitative description of the static and dynamic properties of the
compressed metallic glassy state under high pressure. Using an EOS with a given potential
function, one can distinguish between the possible contributions of cold and thermal pressure
to structural relaxation or phase transition in the BMG during high-pressure annealing.

In this paper we show a measured pressure–volume (P –V ) relation for
Zr41Ti14Cu12.5Ni10Be22.5 BMG up to a pressure of 4.5 GPa at room temperature. In the
lower part of the high-pressure region, the change of volume of the BMG with pressure has
remarkable non-linear characteristics. A simple cubic polynomial equation can be used to fit
the experimental P –V data very well, and the EOS of the BMG is determined, based on the
Morse potential function, by a combination of experimental and theoretical analyses.

The measurements of the P –V relation were performed on Zr41Ti14Cu12.5Ni10Be22.5 BMG
produced by cooling the alloy from the liquid to the glassy state in a quartz container. The
amorphous nature of the as-quenched bar was confirmed by D/Max-2400 x-ray diffraction
(XRD), differential scanning calorimetry, and transmission electron microscopy. The XRD
pattern for this BMG shows a main diffuse peak located at about 2θ = 38.6◦ and a second main
diffuse peak located at about 2θ = 66◦. The high-resolution transmission electron microscopy
image exhibits a homogeneous hazy contrast, which is characteristic of amorphous materials
where the atom arrangement is in the form of random close packing [16]. The amorphous
substance was shaped into rods with a diameter of 4.13 mm and a length of 7 mm, to fit
the tungsten carbide pressure cell. The P –V relation of the specimen was measured by a
piston–displacement technique at room temperature up to 4.5 GPa. The density of the bulk
metallic glassy specimen at room temperature was obtained by Archimedes’ principle. The
initial density was 6.125 g cm−3. The constant-volume specific heat and bulk modulus of the
specimen were calculated on the assumption of an isotropic homogeneous solid according to
the density and acoustic velocity data measured by using a pulse-echo overlap method [15].
The low-temperature specific heat was measured in an adiabatic calorimeter between 1.8 and
20 K using a standard discontinuous heating method.

Compared to the case for crystalline solids, compression of the amorphous solid, with the
existence of free volume, is very sensitive to low pressure [2, 3, 17]. Figure 1 shows the P –V

relation of the BMG under pressure at room temperature. It is clear that the change of volume
with pressure is markedly non-linear and much larger than those for Cu, Ni, and other crystalline
metallic solids below 1.5 GPa [16, 18]. This indicates there are microstructural differences
among them. This non-linear behaviour has also been found in amorphous carbon [19], but
the volume compression of amorphous carbon is much larger than that of the BMG, which
confirms that the latter has a dense-packed atomic configuration compared to other amorphous
materials [20, 21]. The Murnaghan, or Birch–Murnaghan, EOS and other equations that
have been applied successfully to the isothermal compression of conventional solids cannot
describe the experiment results for the metallic glass due to the drastic volume change at low
pressure [22]. The P –V curve can be very well fitted by the Bridgman equation

P(V, T = 298 K) = A0 + A3

(
V − V298

V298

)3

(1)

where V0 = V298 is the specific volume at ambient pressure (P = 1 atm) and room
temperature (T = 298 K), A0 and A3 are fitting constants, A0 = 10−4 GPa (1 atm) and
A3 = −1.0771 × 105 GPa. In order to further study the compression behaviour of the BMG,
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Figure 1. Experimental and fitted P –V relations of the Zr41Ti14Cu12.5Ni10Be22.5 BMG under
pressure at room temperature.

the P –V curve of the BMG can be divided into two parts, i.e., one part for the drastic change of
the compression (in the low-pressure region of about 0–1.5 GPa), and another for the section
of the curve with less pronounced change (in the high-pressure region of about 1.5–4.5 GPa).
A quadratic and a cubic polynomial are applied for the two parts, respectively. The section of
the compression showing drastic change with increasing pressure can be expressed as (thick
solid curve in figure 1)

P = 1.402 29 × 105 − 4.311 831 × 1010V + 4.419 56 × 1015V 2 − 1.510 047 × 1020V 3. (2)

The change in the second part can be written as (thick dashed curve in figure 1)

P = 8.704 891 × 102 − 1.528 026 × 108V + 6.474 716 × 1012V 2. (3)

Comparing equation (2) with (3), we can see that the quadratic and cubic terms of V in
equation (2) impose a non-linear behaviour upon the BMG in the low-pressure region because
of the compression of the free volume. As we know, free volume is the space in which the
atoms or molecules are free to move, and redistribution of the free volume occurs in liquids.
As the temperature of the liquid is lowered, both the volume occupied by atoms or molecules
and the free volume are expected to contract. In the free-volume model of atomic transport, the
glass transition corresponds to the elimination of most of the free volume, and the remaining
free volume is ‘frozen in’ in the glass. The primary term of V in equation (2) imposes a linear
behaviour of the BMG in the high-pressure region. This is similar to the case for metals and
crystalline alloys [16, 18], but markedly different from that in equation (2), which indicates
that low pressure has a larger effect on the glassy state.

The EOS of a solid is generally described by a functional relationship between the
thermodynamic variables defined for a system in equilibrium. Neglecting the electron–phonon
interactions, the energy E and the pressure P of the system can be expressed as

E = EC + ET a + ET e (4)

P = PC + PT a + PT e (5)

where EC and PC are the energy and the pressure at T = 0 K, respectively, ET a and PT a

correspond to the contributions from the atomic vibrations, and ET e and PT e correspond to the
appropriate electron thermal contributions.
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Our fitting results show that only the Morse interatomic pair potential gives the proper
description for interatomic interaction in the present glass. The cold energy of a metallic glass
is of the form [23]

EC(V ) = PC0V0

(
1 − V

V0

)
+

3

2

A

B
V0[exp(B(1 − (V0/V )−1/3)) − 1]2. (6)

The corresponding cold pressure is

PC(V ) = PC0 + A

(
V0

V

)2/3

[exp(2B(1 − (V0/V )−1/3)) − exp(B(1 − (V0/V )−1/3))]. (7)

Here A and B are potential parameters to be determined by fitting experimental results
(equation (1)) at room temperature, V0 is the specific volume of metallic glass at T = 0 K
and P = 0 atm, and PC0 is an additional parameter to adjust for the zero-pressure point in
fitting [24]. In equation (6) we have set the zero point of EC to V = V0.

On the basis of the Debye model of solids, the thermal energy and thermal pressure
associated with lattice vibrations are expressed as

ET a = 3RT D

(
θD

T

)
(8)

PT a = 3RT
K298α298

CV

D

(
θD

T

)
(9)

where R is the universal gas constant, D(θD/T ) the Debye function, θD the Debye temperature,
γ298, ρ298, K298, and α298 are, respectively, the thermodynamic Grüneisen parameter, metallic
glass density, bulk modulus, and volume expansion coefficient at T = 298 K and P = 1 atm,
and CV is the constant-volume specific heat. As a suitable choice we have used an empirical
approximation, γ (V )/V = γ298/V298, for the Grüneisen parameter γ [23].

The electronic contributions are given by

ET e = 1

2
β0

(
V

V0

)2/3

T 2 (10)

PT e = γe

V

1

2
β0

(
V

V0

)2/3

T 2 (11)

where β0 is the electronic specific heat coefficient at T = 0 K and P = 0 atm, and can be
obtained from the measurement of the constant-pressure specific heat at very low temperature.
We take the electronic Grüneisen coefficient γe = 2/3 [23].

Substituting equations (6), (7), (10) and (11) into (4) and (5), we obtain a complete
expression for the EOS of the BMG. In equations (6) and (7), the potential parameters A and
B can be related to the expression PC = P − (PT a + PT e) by using the normal condition
V = V298 and total pressure P = 1 atm. ρ0 (or V0), V298, αT , K298, CV (or CP ), and
β0 can be obtained experimentally. The density (ρ0) at 0 K is calculated from ρ298 and the
thermal expansion coefficient (αT ) measured within the temperature range of 80–300 K and
extrapolated to 0 K [25]. Thus in equations (6) and (7) only two adjustable parameters are to
be determined by fitting the equations to the experimental results. The parameters involved in
the EOS are given in table 1.

Figure 2 is a comparison of the calculated and experimental results. The agreement is very
good. It can be seen that the thermal electronic contribution to the EOS is negligible although
the specific heat of the BMG at low temperature is abnormal compared with those of normal
metals and alloys in similar pressure regions [26, 27]. The thermal pressure does not change
with applied pressure in our region of interest (equation (9)). Below the applied pressure of 0.7
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Figure 2. Comparison between the experimental and calculated results for the P –V relation of the
BMG under pressure at room temperature. The contributions of cold and thermal pressure are also
shown.

Table 1. Experimental data necessary for solving the EOS, and values of the potential parameters
A, B, and PC0.

V298 (m3 mol−1) 9.8007×10−6

V0 (m3 mol−1) 9.783×10−6

αT (K−1) 2.61×10−5

K (GPa) 114.1
CV (J mol−1) 23.5
θD (K) 327.8
β0 (J mol−1 K−2) 6.372 × 10−3

A (GPa) 0.408 12
B (dimensionless) 121.8
PC0 (GPa) −0.601 95

GPa the cold pressure becomes negative, and PC ≈ −PT a at T = 298 K and P = 1 atm. The
proportion of the negative cold pressure decreases with increase in temperature. Corresponding
to zero cold pressure (0.7 GPa), there is a minimum in the cold energy. Hence, it can be
deduced that the structural phase transition and relaxation of the BMG can occur when the
applied pressure exceeds 0.7 GPa and there is an increase of temperature. Correspondingly,
the change of the cold energy in this pressure region is about 3 × 10−3 eV/atom in the
BMG (figure 3). This estimate is in the range of 10−2–10−4 eV/atom from the stored energy
calculation [28], which is small compared with the bond energy (2–4 eV) and the activation
energy of diffusion (1 eV) in BMGs. However, it is important to note that the effect of the
temperature on the thermal contribution is very obvious. For example, its thermal effect can
supply an additional energy of about 0.1 eV to each atom when the temperature is increased to
573 K (see equation (9) and figure 3). The apparent structural change in the BMG can occur
when the specimen is relaxed below the calorimetric glass transition temperature and under
pressure [29].

Originally, the Morse potential was used to describe the interaction in molecular crystals
and liquids, where the binding force between molecules is of dispersion or dipole–dipole type.
The structure and interactions between atoms in metallic glass are markedly different from
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Figure 3. Contributions of the cold, thermal, and electronic energies at room temperature and
573 K in the BMG.

those for ionic and covalent or metallic crystals. The BMG alloy is composed of five metallic
components with large size differences in the atomic diameter, and the glass from the point of
the view of microstructure is considered as a frozen undercooled metal melt; thus the atomic
arrangement is random close packing. The interactions between atoms are non-directional and
weaker than those of crystals due to the packing and the existence of the free volume. In fact,
the resistance of the BMG is about two orders higher than that of metal crystals. Thus, the
Morse potential is more suitable for describing the interaction between atoms in the BMG.

In summary, in the lower part of the high-pressure region, the change of volume of the
BMG with pressure has remarkable non-linear characteristics indicating the existence of a large
amount of free volume. A simple cubic polynomial equation can be used to fit the experimental
P –V data very well. This is also the first time that the EOS of a BMG with the Morse
potential function and the Debye model of solids have been determined by a combination of
experimental and theoretical analyses. This equation can be used to analyse the characteristics
of the interatomic action and structural phase transition caused by pressure and heat relaxation
in the BMG.
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